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Abstract

Visual saliency plays an important role in the human
visual system HVS since it is indispensable for object
detection and recognition. A bottom-up saliency mod-
el was proposed, following the manifold characteristic
of HVS, previously developed for understanding HVS
mechanism. The saliency of a given location of visual
field is defined as the power of features responses af-
ter the dimensionality reduction with manifold learning
for sparse representation of raw input. This saliency
definition also explains the reason that HVS can sup-
press the response of redundant pattern and excite the
response of attended pattern. Experiments show that
our saliency model produces better predictions of hu-
man eye fixations on two dataset in the comparsion of
four state-of-the-art methods.

1. Introduction

The mechanism of visual attention plays an impor-
tant role in biological vision. By recognizing certain
regions of the visual field as salient points, which are
more important than others, the mechanism allows a
non-uniform allocation of visual attention that efficient-
ly reduces the computational burden of HVS. It is gen-
erally acknowledged that visual attention, a process of
selecting and gating visual information, includes two
independent components: a bottom-up, fast, stimulus-
driven mechanism, and a top-down, slower, goal-driven
mechanism. In particular, bottom-up saliency, which
related to the mechanism of visual coding, is more im-
portant.

There are many bottom-up computational models of
visual saliency proposed in the computer and biological
vision [8, 6, 5, 2]. Koch and Ullman [8] proposed the
existence of a saliency map in the visual system and the
relationship between saliency map and attention. Fur-

thermore they proposed a saliency model based on fea-
ture integration theory (FIT) [15], which combined in-
formation from several abstract feature maps (e.g., lo-
cal contrast, orientations, color). The well-known mod-
el [6] implemented the computational model of [8].
Bruce & Tsotsos proposed the principle that attention
concerns maximizing information region of scene [2] to
define saliency. In [5], authors proposed a viewpoint of
information theory to the visual saliency. With the aid
of machine learning method, the article [7] incorporat-
ed top-down clues, middle feature and the bottom-up
model [6] to their model.

In this paper, we propose a biologically plausible
bottom-up saliency model, instead of traditional model
of commonly used center-surrounding mechanism, de-
rived from the principle of the manifold ways of percep-
tion. The principle argues that HVS perceives constan-
cy even though its raw sensory inputs are in flux, and
extracts abstract, relevant features by a process of di-
mension reduction [13, 12, 14, 3]. Our computational
model assigns a point in the image a high saliency value
if it is a high value in the space of the abstract features.
In addition to manifold perception theory, the proposed
model is also based on following evidences of biolog-
ical vision: (1)the sparse coding theory in primary vi-
sual cortex (V1) [10]. (2) the dependence of neighbour
synaptic input for a neuron [9].

In order to simulate the proposed model, we estab-
lish a two-layer network, including two parts: sparse
coding for simulation of early vision, and manifold
learning for simulation of later stage of vision. Specif-
ically, as shown in Fig.1,(1) the input image is divided
into overlapped patches, and these patches are further
convolved with Gabor-like filters, learned from a set of
natural images, based on sparse coding theory. Then the
image is represented as patch-wise convolved respons-
es. (2) To project these patch-wise responses on low
dimension space of abstract space, the Locality preserv-
ing projections (LPP) method is employed. (3) Finally
the saliency in a point is computed by summing over
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Figure 1. The framework of the proposed method. There are three main steps in our method:
encoding image patches by sparse coding, reducing dimensionality via LPP, and evaluating
the saliency value. The range in color from red to blue are arranged in order of salient degree.
With the mapping from high dimensional space to low dimensional space, the salient points
are far from the origin of feature space.

each component in the response in low dimensional s-
pace (e.g. L1 norm).

The rest of this paper is organized as follows: In sec-
tion 2 we demonstrate a two-layer network and discuss
the technical details, include how to measure saliency
value from the coded representation. Section 3 shows
experimental results of comparison between our model
and other four state of the arts methods.

2. Method

2.1 Sparse Coding

In [10], Olshausen et al. proposed a computation-
al model for the receptive field of simple-cell, which is
able to simulate the encoding process in V1. The theory
argues that the most number of neurons will be inactive
while V1 receives a visual stimulus. Based on the the-
ory, each image can be sparsely linearly represented by
finite bases.

In this paper, a set of basis, employing sparse repre-
sentation for natural image patches, is learned by inde-
pendent component analysis (ICA) method [1]. Specifi-
cally, more than a hundred thousand RGB image patch-
es of 8× 8 size are used to train the set of basis, which
include 8 × 8 × 3 = 192 basis functions. Let the
A be the set of sparse basis, where ai is a vector of
A = [a1, a2, ..., a192]. Let the W = A−1 where also
includes 192 vectors W = [w1, w2, ..., w192]

T which
are considered as linear filters to image patches. Vec-
toring the input image be S = [s1, s2, ..., sn], where si
is a vectorized image patch. The neuron responses of

vectorized image patches S on the set of basis W are:

X =WS (1)

where X = [x1, x2, ..., xn] is sparse representation of
S.

The set of basis, as shown in Fig.2, learned from
patches looks like Gabor functions, which simulates the
mechanism of primary visual cortex. Technically, this
process contributes to making structure in natural sig-
nal explicit and representing complex data. However
the most important of sparse coding is that the manifold
of raw inputs then becomes less curvature in the higher-
dimensional space defined by the neural responses, thus
making it easier to learn structure in data [11].So it con-
tributes to the following process, learning the intrinsic
dimension from the high dimensional input, and makes
the result more robust.

2.2 Dimension Reduction with Locality Pre-
serving Projections

In this paper we choose the Locality Preserving Pro-
jections [4](LPP) to find the projection in intrinsic low-
dimensional space from high dimensional data of sparse
representation. The algorithmic procedure is formally
stated as below:

Firstly, construct the adjacency graph and choosing
the weight: for the establishing topological structure of
given data, let G = (V,E) be an undirected graph with
vertex set V = {v ∈ X = [x1, x2, ...xn]} which is the
sparse representation of patches S. In the following we
assume that the graph G is weighted, that is each edge
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(a) (b)

Figure 2. (a) The 64 components of 192
basis functions. (b) The 64 components
of 192 filter functions.

between two vertices xi and xj carries a non-negative
weight wij ≥ 0. The weighted adjacency matrix of the
graph is the W = (wij)i,j=1,...n. Considering that a
neuron’s activities are driven by the total synaptic in-
put from its neighbours [9], a graph could be defined
naturally based on the spatial location of the few neigh-
bouring pixels.

The objective of LPP can be formulated as following
optimization problem:

P = argmin
P

∑
ij

(PTxi − PTxj)
2Wij (2)

Where P is a projection matrix, P = [p1, p2, . . . , pn]
for transformation of data x in new basis. In consid-
eration of the independence among different basis, the
formula can be rewritten as:

p = argmin
p

∑
ij

(pTxi − pTxj)2Wij (3)

Where p means anyone basis in P . Further, let pTxi
substitute yi in equation 2:∑

ij

(yi − yj)2Wij = 2Y T (D−W )Y = 2Y TLY (4)

Where D is a diagonal matrix, Dij =
∑

j Wij , and the
L = D−W is called Laplacian matrix. One basic prin-
ciple in the visual system is to suppress the response
to frequently occurring input patterns, while enhancing
the response to attended pattern. According to that, the
constraint of Y TDY = 1 is added. Because it is ca-
pable of making the similar sample close the origin of
coordinates. Now, the optimization problem is given
by the solution to the following generalized eigenvector
problem:

pTXLXT p = λpTXDXT p (5)

We can choose n eigenvectors, corresponding n small-
est eigenvalue to construct a projection matrix P =
[PT

1 , P
T
2 , ..., P

T
n ] and get Y = PX .

2.3 Saliency Map

The saliency of xi is supposed to be measured direct-
ly as:

Si =

n∑
j=1

|yij | (6)

where yij is j-th dimension of new features space in i-th
patch of image.

3 Experiments

To test the performance of the proposed model, ex-
periments on two datasets are conducted to compare the
proposed model with four state-of-the-art approaches.
The first dataset in common use collected by Bruce et
al. [2] usually serves as the benchmark for comparing
visual saliency detection results. This dataset consists
of a variety of images about indoor and outdoor scenes.
Eye fixations are recorded from 20 subjects on 120 col-
or images. And the other one [7] consists of 1003 im-
ages, which mainly selected from Flicker creative com-
mons and LableMe while the eye tracking data of 15
subjects are recorded with an eye-tracker for these im-
ages. There are some parameters in the proposed ap-
proach. Specifically, we set to 12 nearest neighbours
for graph construction, and 20 eigenvectors for formula
4. In particular, we have given zero for the center prior,
even it improves the value of AUC to our method, com-
pared with the others methods ([16], [7]) incorporated
into center prior.

On these datasets, we choose the area under ROC
curve (AUC) to evaluate the performance of various
saliency models.The AUC demonstrates the overall per-
formance of a saliency model. Perfect prediction, corre-
sponds to the AUC of 1, while random prediction gen-
erates an AUC of 0.5.

For evaluating with qualitative analysis, we show
our saliency maps and the fixation density maps gen-
erated from the sum of all 2D Gaussians to the hu-
man fixations, and compare our saliency map on differ-
ent datasets with other four state-of-the-art approach-
es ( [5], [6], [2], [7]). The saliency maps with Bruce
dataset and Judd dataset is showed in Fig.3.

As Figure 3 shows, it is easy to get that our saliency
maps, compared to other ones, are very close to the ref-
erence generated from human fixations in benchmark of
dataset provided by Bruce. The proposed model is ef-
fective to predict the saliency for some warning signs.

2608



Bruce Dataset Judd Dataset
AIM 0.7241 0.7076
Itti’s 0.7455 0.7169
ICL 0.7705 0.7359
Judd’s 0.7795 0.7732
Our Method 0.8234 0.8090

Table 1. The AUCs comparison of al-
l methods with different datasets.

And in the image of dashboard (Column 5 in Fig.3), our
method is unique to effectively detect the speedometer
and gauges for mileage.

Table 1 presents AUC value for five approaches, and
it is used for quantitative analysis. Even without cen-
ter prior, the proposed model performs better than the
others four method, especially 3% improvement better
than Judd’s method, which consists of low feature, mid-
dle feature, even top-down clue and center prior.

4 Conclusion

In this paper, we propose a framework that encodes
the retinal input by sparse coding and maps the codes
into intrinsic dimension. Saliency is defined as the dis-
tance between the patch in mainfold and the origin. S-
ince the redundant information concentrate compactly
around the origin of the coordinate, the larger the dis-
tance from original point is, the more salient the area is.
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