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Visual Saliency via Loss coding

Hao Zhu and Biao Han

Abstract— A novel and effective bottom-up saliency model
inspired by the recent findings of the early vision system is
proposed. The lossy coding length, which resembles the neural
cost in the hierarchical structure of human vision system, is
exploit to measure saliency. We show that the proposed efficient
coding network can be considered as the coding process in the
early vision system. The sparse coding process in simple cells
of the primary visual cortex and a dimensionality reduction
process via the principal component analysis are integrated in
the proposed network. The saliency value at each image pixel
is computed based on the residual of the coding process. The
proposed biological-inspired saliency model is evaluated on two
different eye-tracking datasets against several state-of-the-art
algorithms. Experimental results demonstrate the effectiveness,
efficiency as well as robustness of the proposed model, and bear
out the hypothesis of lossy coding for visual saliency.

I. INTRODUCTION

Rich visual information of any scene entails the human
visual system (HVS) to constantly process enormous amount
of data. According to the classical findings by Kelly [14],
retinal receptors receive information at an estimated rate of
10° bits per second. As a key process in the HVS, visual
attention helps humans understand the scenes and recognize
objects by rapidly selecting the highly relevant information.
In the meanwhile, the principle of efficient coding is the
widely accepted for explaining visual perception in the HVS.
Extensive research work in neuroscience, psychology and
computer vision has been done, with focus on not only to
explain visual attention mechanisms but also understand the
ways to perceive the world. In addition, the study of how
humans process such astronomical amount of visual data
is of great interest and importance to computer vision with
numerous applications.

In the context of modeling, efficient coding and visual
attention can be respectively considered as the process of
feature extraction and feature selection. The efficient coding
step transforms the input data from retinal receptors into
a reduced representation set of features which facilitates
further visual processing [1]. This process is by its nature
can be modeled by lossy coding in HVS for great dimen-
sionality reduction of visual data. Visual attention, which
can be differentiated according to its states as “overt” and
“covert” [25], selects a subset of relevant information for the
further processing. Overt attention directs the high resolution
fovea sensors towards the selected stimulus source, and
covert attention enhances a particular part of the sensory
panorama in the neural process. Unlike most computer vision
algorithms, there is no particular order in the “feature extrac-
tion” and “feature selection” process. Efficient coding and
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visual attention work closely to deal with enormous amount
of visual information and help humans perceive the world.

Koch and Ullman propose a saliency map model based on
the difference of a stimulus from its surroundings [15]. This
saliency map is developed based on the feature integration
theory [21] that models visual attention mechanism by com-
bining information from feature maps (e.g., color, orientation,
movement, etc.). In computer vision, Itti and Koch [12]
propose the classic saliency model which is derived from this
center-surrounding model. Numerous saliency models have
since been proposed based on information theory [3], [10],
[16], [26], spectral theory [9], [5], graph theory [7], [24],
and feature learning [13]. While these algorithms perform
well in detecting salient objects in scenes, they can hardly
explain the relationship between these computational models
and real neural systems.

In this work, we propose a saliency model which aims
to explain the relationship between efficient coding theory
and bottom-up saliency map in the early vision system.
The proposed model exploits the spatial slowest component,
which can be considered as the neural cost in the hierarchical
structure of the HVS, to measure the potential entropy loss
of the efficient coding process. We first model the sparse
coding process in simple cells of the primary visual cortex
(V1). The results of this coding process suggest strong
correlations among signals which can be compressed for
efficient computation. A dimensionality reduction step based
on principal component analysis (PCA) is thus incorporated.
Finally, the lossy coding cost in this coding network is used
to measure visual saliency.

Figure 1 shows the main steps of the proposed model.
First, an input image is divided into non-overlapping patches
of fixed size and each is filtered with a number of sparse
coding bases to model the responses of simple cells. Second,
the response of simple cells is further compressed by PCA.
Third, lossy coding length which measures the reconstruction
residual in this coding network, is used to compute the
saliency value. Patches with high reconstruction residuals
indicate these are distinct areas which cannot be easily coded,
and thus exhibit strong saliency.

Our contributions of this work are three-fold. First, we
propose a novel computational model to model the bottom-
up attention process in neural mechanisms. Second, the
proposed model exploits the relationship between efficient
coding and bottom-up saliency. Third, we show that the pro-
posed model outperforms several state-of-the-arts methods,
which can be applied to real-world vision tasks.
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Proposed framework. An patch in location (z,y) is filtered by sparse coding basis functions to obtain the corresponding response in the receptive

field of simple cells. This response is then encoded using PCA to reduce the redundancy. By measuring the lossy coding length, we compute the saliency

value of the patch at location (x,y).

II. SALIENCY MODEL

V1 cells plays a vital role in processing huge amount of
visual information. To process visual data efficiently and
effectively, it is crucial to reduce the data dimensionality.
There are two main strategies for dimensionality reduction,
data compression with minimum information loss and data
representation with explicitly selected lossy information, and
it can be related to the coding process and attention in
the HVS. In [17], a bottom-up saliency model is proposed
based on V1 cells. Based on this model, we compute the
information loss in V1 cells as indication of saliency. In this
section, we exploit efficient coding in simple cells of V1 and
beyond, and from the information loss the proposed saliency
model is constructed.

A. Efficient Coding in Simple Cells

The efficient coding theory [1] shows that the HVS ex-
ploits the statistical regularities or redundancies in natural
scenes for data compression with minimum information loss
using limited neural resources (limited number of neurons
and power consumption by neural activities). To reduce
data redundancy, it is modeled that the HVS transforms the
original input S = {s1,82,---sy} in the neurons (e.g.,
photo-receptors and simple cells of receptive field) to signals
O = {01,09,---0pr} in other neurons (e.g., simple cells of
receptive field or cortical neurons). The problem is simplified
by approximating the neural transform as a linear function
K,

O = K(S) without regard to noise. ()

Hence the optimal encoding, which balances the neural
resources and information extraction, is to find the transform

function with minimal loss
E(K) = neural resources — A (0; S), 2)

where the parameter \ balances the information extraction
I(0; S) and the neural resource (explained in the following
section). The mutual information 7(O; S) is defined as:

1(0;S) = H(S) — H(S|0)

_ op 20510 3)
—OZSP(O,S)I TR

where P(O,S) is the joint probability of the output signal
O and the input signal S, and P(S|O) is the conditional
probability. Olshausen [19] proposes the receptive field of
simple-cells in the primary visual cortex encode neural
responses by sparse coding. The sparse coding theory is then
developed to extract the intrinsic structure of natural images
for efficient coding [19], [22]. These studies show that an
image can be sparsely represented by a linear combination
of small number of bases. The transform function can be
represented by

S(z,y) =D 0iilw,y) +e. )

where the coefficient O; obeys a Laplace distribution. These
coefficients and residual error can be computed by its corre-
sponding filter basis ¢;(x,y).

Similar to Equation 2, the neural cost and information
extraction of Equation 4 needs to be balanced by

E(¢) = [¢]* — \[sparseness of O;], 5)

where the first term measures information loss and the second
term indicates the power consumption by neural activities.
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The coefficient O; can be computed by the corresponding
filter function ¢; ' (z,y) as,

where ¢! (x,y) is the inverse or pseudo-inverse of ¢;(z, ).
We learn a set of basis functions which yields a sparse
representation of natural image patches by independent com-
ponent analysis (ICA) [2] which has been shown to produce
sparse codes [8]. For computational efficiency and coding
effectiveness, we learn sparse coding basis by using 120,000
8 X 8 x 3 RGB image patches randomly extracted from
natural images. A set of 192 basis functions are obtained
using ICA [2]. Figure 2(a) shows some of the leaned basis
functions. We use the inverse of the trained bases as the filter
functions. Figure 2(b) shows some learned filter functions.

(@ (b)

Fig. 2. (a) 64 basis functions from the set of 192 learned basis functions.
(b) the corresponding filter functions from the 64 basis functions.

B. Efficient Coding beyond Simple Cells

In the sparse coding stage, visual information is com-
pressed. Nevertheless, there exist strong correlations between
two different sparse coding components as shown in Figure 3.
These results show that sparse coding process does not decor-
relate different components perfectly. In other words, re-
dundant information still exists in multiple channels. Hence,
more efficient coding can be obtained (e.g., decorrelation or
dimensionality reduction) for neurons in later stages.

For this reason, the neural resource term is defined as
>~;(02) [27], which is the trace of the output correlation ma-
trix RO with elements RO = (0;0;) = (K (S);K(S);) =0
when i # j. Thus, Equation 2 can be expressed as

E(K) = neural resource — A\ (O; S)
=) _(0}) = M(0:5), ™

where >°,(0%) = Tr(R°) = Tr[K(R%)KT] and Tr(-)
denotes the trace of a matrix.

To minimize the above functions, further dimensionality
reduction is required. Therefore, the reduced-dimensionality
representation of signal S (from the N-dimensional space)
is projected down to the reduced M -dimensional space (i.e.,
N > M). In this work, we use PCA for this process, and the
value of M is obtained by retaining 90% of total variance.
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Fig. 3. The plots the distribution in two different channels of simple cells
responses. It is easy to observe that each channel is subject to Laplace
distribution and they are strongly correlated.

C. Lossy Coding Length and Visual Saliency

Lossy coding occurs beyond simple cells in V1. In the
following paragraphs, we will argue the relationship between
lossy coding and visual saliency. Approximating the residual
error between response of simple cells and reconstructed
one as Gaussian, the extracted information at the output
is 27199 o ((PS)T(PS)) and coding uncertainty is
described by H(S|K~'0) ~ log((PS)"(PS)) [27]. The
projection P is defined as following:

P=I-KKT' 8)

where K is a rectangular matrix of low rank whose columns
are the k eigenvectors having the largest eigenvalues of
Tr(R®). From the information theory perspective, efficient
coding results can be decomposed into two parts [6]:

H (Simple Cells Response)
=H (Redundancy) + H (Saliency) )
=I1(0;8)+ H(S|K~'0),

where H (Redundancy) denotes redundant information that
can be interpreted by a coding system, and H (Saliency)
is related to lossy coding length. We define the residual to
measure saliency in order to simplify the computation by

Lossy Coding Length = (PS)T(PS) (10)

Based on this formulation, we compute the residual for
each patch at image location (z,y), and then construct a
residual map. Finally the saliency map is generated from the
normalized residual map.

III. EXPERIMENTS

In this section, we evaluate the performance of the pro-
posed model with extensive experiments on two public
eye-tracking datasets: the Bruce dataset [3] and the Judd
dataset [13]. On each eye-tracking dataset, we compare
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our model with ten state-of-the-art models including Itti et
al. [12], attention by information maximization (AIM) [3],
discriminant saliency (DS) [4], incremental coding length
(ICL) [10], saliency using natural statistics (SUN) [26],
Judd et al. [13], saliency detection by self-resemblance
(SDSR) [20], Li et al. [16], saliency by site entropy rate
(SER) [24], and scale integration (SI) [18]. The computa-
tional efficiency of these methods is also demonstrated using
the Bruce dataset. The relationship between scale, execution
time and performance are also analyzed in the experiments.
These results show that the proposed saliency model is
robust, effective, and efficient.

A. Qualitative Evaluation

Human fixation

o] 4o Jsa] w2

Our model

Fig. 4. Representative experimental results of our method with comparisons
to four state-of-the-art methods and human fixation density maps using the
Bruce dataset. The rows from top to down are: the original stimulus image,
saliency maps generated by Itti et al. [12], AIM [3], ICL [10], Judd et
al. [13], human fixations density maps and our saliency maps

Experiments with the Bruce Dataset: The Bruce dataset [3]
consists of 120 images in a variety of indoor and outdoor
scenes. The eye-tracking data points in this set are collected
by showing images on a 21-inch CRT monitor with a 4
seconds interval at a distance of 0.75 meters from the subject.
This dataset has been widely used to benchmark results of
different saliency models.

For fair evaluations, we use the default parameters of
existing algorithms from the original source codes. Instead of

using the original iNVT toolkit or the Saliency Toolbox [23],
we use the implementation by Harel [7] to evaluate the model
by Itti et al. [12] which performs faster and more accurately
in fixation prediction.

We evaluate the performance of saliency models in terms
of their qualitative results. Representative saliency maps
from four state-of-the-art algorithms [12], [3], [10], [13]
and human fixation density maps are shown for comparisons
with our model in Figure 4. The fixation density maps are
obtained by overlapping Gaussian kernels in every fixation
map. Overall, our saliency model performs favorably against
other methods and matches human fixation maps well.

Judd et al.

=

Human fixation
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Fig. 5. Representative experimental results of our method with comparisons
to four state-of-the-art methods and human fixation density maps using the
Judd dataset. The rows from top to down are: the original stimulus image,

saliency maps generated by Itti et al. [12], AIM [3], ICL [10], Judd et
al. [13], human fixations density maps and our saliency maps

Experiments with Judd Dataset: The Judd dataset [13]
contains 1003 images with 779 landscape and 228 portrait
images. The eye-tracking data in this dataset is collected by
showing images on a 19-inch monitor at the resolution of
1280 x 1024 pixels with a 3 seconds interval separated by
1 second gray screen at a distance of about 0.6 meters from
the subject.

Most of the saliency models in existing literature simply
use the Bruce dataset for evaluations. However, this set just
has a small number of images and there are no portrait im-
ages while the image orientation could affect the eye-tracking
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results significantly. Thus, we also evaluate the proposed
model against other algorithms using the Judd dataset [13]
which contains more and complex images. Representative
saliency maps from four state-of-the-art algorithms [12], [3],
[10], [13] and human fixation density maps are presented in
Figure 5. Our saliency model performs well against other
methods and matches human fixation maps closely.

B. Quantitative Evaluation

The ROC curves with Bruce dataset
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Fig. 6. The ROC curves of our model and the other four state-of-the-art
approaches. (a) using the Bruce dataset. (b) using the Judd dataset.

For quantitative evaluation, we compute the Receiver
Operator Characteristic (ROC) curves and the Area Under
Curves (AUC) of each approach using both datasets. The
ROC curves and AUC are generated by computing the mean
value of the output from toolbox provided by Harel [7] with
human fixation and saliency maps for each image in the
dataset. There are minor differences between the showed
results and their reported results in the literature as the
settings of ROC algorithm are different. The results by Itti
et al. [12] are better than those from AIM [3] as we use
the implementation by Harel [7]. The ROC curves of state-
of-the-art approaches and the proposed algorithm using both
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Fig. 7. The AUCs with both datasets. Larger AUC values indicate better
performance.

datasets are shown in Figure 6. In addition, the AUCs of the
evaluated algorithms are are presented in Figure 7. Overall,
the proposed saliency model performs well against state-of-
the-art methods on both datasets.

C. Computational Cost and Image Scale

Method | Run time per image (s) Implementation
Itti et al. [12] 0.28 Matlab&C
AIM [3] 41.64 Matlab
DS [4] 2437 C
ICL [10] 0.2 Matlab
SUN [26] 0.57 Matlab
Judd et al. [13] 12.35 Matlab&C
SDSR [20] 2.4 Matlab
Li et al. [16] 9.62 Matlab
SER [24] 5.2 C
SI [18] 6.71 Matlab
Proposed 0.15 Matlab
TABLE I

RUN-TIME PER IMAGE COMPARISON IN THE EXPERIMENT WITH THE
BRUCE DATASET.

For real-world applications, the computational cost is
important. Table I shows the average execution time of
evaluated methods using the Bruce dataset. These algorithms
are implemented in different languages including C, Matlab,
and Matlab with C (i.e., MEX). The experiments are carried
out on a PC with CORE2 dual processors and 4G memory.
Our algorithm performs more efficiently than other methods
with the Matlab implementation and no code optimization.

The scale of an input image is the key factor of compu-
tational cost in our saliency model and other methods. The
computational cost grows rapidly when the scale is increased.
In addition, the image scale also affects the performance of
our saliency model. With smaller scale images, the AUC
values tend to be larger. Figure 8 shows the effects of image
scale to the proposed saliency model.

To select proper image scale for best performance, we
develop a biologically-inspired method. As the perceived
image scale depends on several factors including size of input
image and eyes as well as the relative distance between a
monitor and the human subject. In our model, each patch is
processed by an independent receptive field. Thus, the input
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image should be resized based on the receptive field diameter,
image size, monitor size and the distance between subject
and monitor. By solving trigonometric functions, we estimate
the view angle of the image diagonal is 40.75 degrees
in the Bruce dataset and the diagonal length of images
is 851 pixels. Therefore, each pixel we use in the Bruce
dataset occupied 0.034 x 0.034 degrees while the receptive
field is 0.25 x 0.25 degrees to 0.5 x 0.75 degrees [11].
For computational efficiency, we rescale the input image to
0.06125 of the original size for the experiments with the
Bruce dataset. In the Judd dataset, the monitor diagonal is
about 48 degrees. The view angle of the image diagonal is
about 37 degrees and the diagonal length of images from the
Judd dataset is 1280 pixels using a 1024 x 768 monitor. Each
pixel we use in the Judd dataset thus occupies 0.021 x 0.021
degrees. For efficiency, we rescale the input image to 0.05 of
the original size for the experiments with the Judd dataset.
These scale settings are used in all experiments of this work.
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proposed model is more robust and applicable to tasks with
large and complex scenes. In addition, we develop a simple
and effective method to determine optimal image scale for
better performance.

In two different eye-tracking datasets, performances have
decreased with the increase of amount of the images in
different models. Our model and the method by Judd et
al. [13] are least affected. This indicates that the proposed
model is robust, and large scale and complex dataset is
possible to comprehensively test models.

Both the model by Judd et al. [13] and the algorithm of Itti
et al. [12] implemented by Harel [7] apply a prior to focus on
central areas for performance improvements. However, there
is no obvious evidence that the center prior exists in visual
attention. Thus, we do not use this prior in the experiments
described above although it may significantly improve the
performance of our model.

IV. CONCLUDING REMARKS

In this paper, we propose a novel bottom-up model based
on lossy coding length. It also helps us understand the
architecture of the early vision system since each step in our
model corresponds to the functions of the primal visual cor-
tex. The proposed biologically-inspired model is also simple,
practical and computationally efficient. As demonstrated in
numerous experiments, the proposed method shows promis-
ing performance in two different datasets which include eye
tracking data.

Based on a simple two-layer coding network, as shown
in Figure 1, we develop a saliency model with demonstrated
performance. It is plausible that bottom-up saliency is only
an additional function for the coding network while there are
no particular neurons for it.

Fig. 8. The effect of scale to computational time and performance on our
method using the Bruce dataset.

D. Discussion

As Figure 4 and Figure 5 show, our saliency maps look
like the human fixation density maps. It could be seen as that
our saliency maps could show the characteristics of human
fixation very well.

Our model outperforms all other models both in the Bruce
and Judd datasets by comparing the AUCs as described in
Figure 7.

The ROC curves show a good performance as we can see
in Figure 6. Our model could perform a 0.8 true positive rate
at the false positive rate of about 0.3.

It is also very fast. As we can see in Table I, we only
use 0.15 seconds to compute the saliency map for one input
image which is slightly shorter than the time used in the im-
plementation of the model by Itti et al. [12] while our model
is not optimized for speed. In the eye-tracking datasets, the
performance of all models is decreased when the input image
number is increased. Nevertheless, our model and the method
by Judd et al. [13] are least affected. This indicates that the

In our future work, we will propose methods which
introduce more reasonable bottom-up neural mechanism and
useful top-down cues. In this way, we could accomplish more
works which could be a more reasonable way to simulate
human visual attention and perhaps it is a better way to
narrow the distance between human beings and computers.
Our future work will focus on more saliency models with top-
down cues to explain purposeful visual search. The top-down,
task-based modulation of saliency has been shown in several
studies which can be applied to computer vision tasks such
as contextual priming and object detection. We aim to extend
the proposed saliency model within the supervised learning
framework for these tasks. Our future work will focus on
more saliency models with biologically-plausible bottom-up
neural mechanism to explain visual attention and perception.
The bottom-up, data-driven modulation of saliency is one of
the most important topics in psychology and neuroscience,
and is of great potential for computer vision applications.
We aim to extend the proposed saliency model within the
supervised learning framework for these tasks.
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