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A B S T R A C T

The auditory cortex is sensitive to many forms of acoustic regularity, resulting in suppressed neural activity for
expected auditory events. It is unclear whether this activity reduction for expected events is the result of sup-
pression of neurons that are tuned to the expected stimulus (i.e., dampening), or alternatively suppression of
neurons that are tuned away from the expected stimulus (i.e., sharpening). In the present study, we adjudicated
between these models by characterizing the effect of expectation on the ability to classify the identity of auditory
stimuli from auditory neural activity patterns, using magnetoencephalography (MEG) in healthy human ob-
servers. Participants listened to pure tone pairs, in which the identity of the second tone was either expected or
unexpected. The task of the participants was to detect a target tone, which deviated strongly from both the ex-
pected and unexpected tones. We found a strong suppression of the overall neural response in the expected
condition compared to the unexpected condition. Linear classifiers showed a reduced ability to decode stimulus
identity from event-related auditory fields in the expected condition compared to the unexpected condition. This
suggests that stimulus-specific event-related activity is dampened for expected tones in auditory cortex.
1. Introduction

Sensory processing is not only dependent on the current stimulus, but
also influenced by top-down factors like prior expectations (Lange et al.,
2018; Summerfield and de Lange, 2014). Behavioral evidence shows that
expected stimuli are associated with behavioral performance improve-
ments in terms of accuracy, reaction time and sensitivity in perceptual
decision-making (Rahnev et al., 2011; Stein and Peelen, 2015; Cheadle
et al., 2014). Perhaps surprisingly, in terms of neural activity, expected
events are usually not associated with increased neural activity. Rather,
many studies show that valid expectation decreases the neural signals in
single/multi-unit recordings (Kumar et al., 2017; Kaposvari et al., 2018;
Meyer and Olson, 2011), electroencephalography (EEG)/magnetoence-
phalography (MEG) data (Todorovic et al., 2011; Todorovic and de
Lange, 2012; Garrido et al., 2009) as well as in functional Magnetic
Resonance Imaging (fMRI) data (Alink et al., 2010; Egner et al., 2010;
Summerfield et al., 2008; Kok et al., 2012). This neural phenomenon is
often referred to as expectation suppression.

The mechanisms of expectation suppression are still a topic of debate.
One proposal is that neural representations of expected sensory signals
are sharpened (Mumford, 1992; Kok et al., 2012). Under this account,
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reduced activity when there is an expectation is caused by a suppression
of the subset of the neurons that are less selective to the stimulus. In other
words, neurons that are carrying the information about the stimulus
maintain their level of activation (or are even enhanced), while neurons
that are carrying the irrelevant information are suppressed, resulting in a
better signal-to-noise ratio in the neural representation and thus facili-
tating perception (de-Wit et al., 2010; Murray et al., 2004; Lim et al.,
2015). Alternatively, it has been proposed that the brain sends forward
only the unexpected part of the sensory input while expected signals are
suppressed (Blank and Davis, 2016; Rao and Ballard, 1999). In this ac-
count, reduced activity is the result of a relative deactivation of neurons
that are selective to the stimulus, weakening the quality of the sensory
input.

There is empirical support for both proposals. Studies that focused on
orientation-selective responses in early visual cortex showed that prior
expectations can induce a sensory template (Kok et al., 2014) around the
time of onset of the stimulus (Kok et al., 2017; Gavornik and Bear, 2014),
and thereby enhance the neural representation for the expected stimulus
in primary visual cortex (Kok et al., 2012). On the other hand, studies
that focused on object-selective representations in inferotemporal cortex
showed a dampened neural representation for expected stimuli (Kumar
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et al., 2017; Meyer and Olson, 2011; Richter et al., 2018). This suggests
that while expectation suppression may be a general phenomenon, its
exact properties may depend on stimulus representation and location in
the cortical hierarchy.

In this study, taking advantages of the high temporal and spatial
resolution of MEG, we tried to adjudicate between the expectation
sharpening model and expectation dampening model in the auditory
domain by characterizing the effects of expectation on auditory evoked
activity. We manipulated participants’ stimulus expectation by assigning
different occurrence probabilities to different tone pairs. We compared
overall evoked activity and the fidelity of the neural representation be-
tween expected and unexpected conditions. To preview, we observed
strong attenuation of auditory evoked activity for expected tones,
consistent with previous studies. The fidelity of the neural representation
was lower for expected tones suggesting a dampening of evoked re-
sponses for expected auditory events.

2. Materials and Methods

2.1. Participants

Twenty-six healthy participants enrolled in the experiment. Two
participants were excluded from the analysis because of excessive mea-
surement noise in the MEG data. The analyses were performed on the
remaining twenty-four participants (15 female; age: 27.8� 8.2 years,
mean� SD; all right-handed). All participants had normal hearing and no
history of neurological or psychiatric disorders. All participants gave
their informed consent prior to the experiment in accordance with the
Declaration of Helsinki and the study was approved by local ethics
committee (Commisie Mensgebonden Onderzoek (CMO) Arnhem-
Nijmegen, The Netherlands) under the general ethics approval (Imag-
ing Human Cognition, CMO, 2014/288).

2.2. Data and code availability statement

All the data and code are available at https://data.donders.ru.nl/coll
ections/di/dccn/DSC_3018035.01_533. The data and code used in the
study are available in the public domain for its sharing or re-use. The data
and code sharing adopted by the authors comply with the requirements
of the institute, and comply with institutional ethics approval.

2.3. Experimental design

Participants were presented with pairs of pure tones. Each single tone
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was 50ms in duration including 2.5ms on-ramp and 2.5ms off-ramp and
~75 dB in loudness. The pitch of the first tone could be either 1046Hz or
1174Hz (Tone A or B, Fig. 1 AB). The pitch of the second tone could be
1318Hz, 1396Hz (Tone C, D) or 3520Hz (target tone). For each trial, the
pair of the two tones, separated by 400ms, was presented using a PC
running Presentation software (Neurobehavioral Systems) binaurally via
MEG-compatible air tubes. The intertrial interval (defined as the interval
between the second tone offset of current trial and the first tone onset of
next trial) was set from 800ms to 1200ms.

Each participant performed 1600 trials, which were presented in 32
blocks (50 trials each). The identity of the first tone in all odd-numbered
blocks was tone A, while the first tone was tone B in all even-numbered
blocks. We manipulated the expectation by assigning different occur-
rence probabilities to the second tone. In the first 16 blocks, the tone pair
A-C or tone pair B-D were assigned an occurrence probability of 70%
(expected), while the tone pair A-D or tone pair B–C were assigned an
occurrence probability of 20% (unexpected). In this way, tone C and D
could be both expected and unexpected in the experiment, i.e. the
expectation effect was independent from the stimulus identity. In order
to further avoid any possible confounding effects of the stimulus identity
of the first tone, in the other 16 blocks, the probability relationship was
reversed: tone pair A-D and B–C were assigned a probability of occur-
rence of 70% and pair A-C and B-D were assigned 20%. In all 32 blocks,
the target tone was assigned a probability of 10% and the participants
were instructed to press a button with their right hand when they heard
it.

2.4. MEG data acquisition and preprocessing

Brain activity was recorded using a whole-head MEG with 275 axial
gradiometers (CTF MEG TM Systems Inc., Port Coquitlam, Canada) in a
magnetically shielded room. Head localization was monitored continu-
ously during the experiment using coils that were placed at the cardinal
points of the head (nasion and left and right ear canals). As an aid for eye-
blink rejection, an electrooculogram (EOG) was recorded from the su-
praorbital and infraorbital ridge of the left eye using 10-mm-diameter
Ag–AgCl surface electrodes. All data were digitized at 1200Hz and
stored for offline analysis.

Data analysis was performed only on the trials containing the ex-
pected or unexpected tones, not on the trials containing the target tone,
using FieldTrip (Oostenveld et al., 2011) with MATLAB (MathWorks)
complemented by custom-written software. Epochs (i.e., trials) were
extracted from all MEG channels surrounding each stimulus, extending
from 500 before to 1500ms after the first tone onset. Data epochs were
Fig. 1. (A) Auditory stimuli. Subjects were
presented with two consecutive pure tones of
50ms with an inter-stimulus interval of
400ms. (B) Experimental design. Expecta-
tion was manipulated by by assigning
different occurrence probabilities to the sec-
ond tone. Expected tone pairs occurred on
70% of trials and unexpected tone pairs on
20%. The relationship between first and
second tones was reversed after half of the
experiment. Subjects were instructed to press
a button whenever a target tone occurred,
and such a tone was very different from the
expected and unexpected tones. Trials with a
target tone were removed from the analysis.
(C) Hypothesized fidelity of the neural rep-
resentation of the tone identity under the
expectation sharpening model and expecta-
tion dampening model.
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checked for artifacts using a semiautomatic pipeline which was able to
detect and reject trials containing muscle artifacts and jumps caused by
the SQUID electronics. Furthermore, independent component analysis
(A. J. Bell and Sejnowski, 1995) was performed to remove the artifacts
attributable to eye blinks and heartbeat (Jung et al., 2000). Finally, based
on visual inspection, trials containing any remaining artifacts were
rejected manually. In the end, around 75% trials in each condition
remained after the trial rejection and were selected for further analysis.

For the analysis, we further grouped all trials with tone C as the ex-
pected tone regardless of the identity of the first tone and labeled them as
the “expected tone C00 condition. Similarly, we also created “expected
tone D00, “unexpected tone C00 and “unexpected tone D00 conditions. Since
each condition contained an identical number of tone A and tone B, this
cancels out any potential activity differences caused by the identity of the
first tone.

Event-related field and global mean field

Before computing the event-related field (ERF) and global mean field
(GMF), a 30Hz low-pass Butterworth IIR filter with a filter order of 6 was
applied. ERFs were baseline corrected using an interval of 100 to 0ms
before the first tone onset. Without any assumption of the source loca-
tion, GMF measures the overall activity by computing the mean standard
deviation between the data in different channels (Lehmann and Skran-
dies, 1980). Unlike many techniques such as source modeling and
event-related fields, GMF does not require a prior assumption on the
source of the MEG signals or manual selection of interested channels,
allowing a more direct and robust measure of overall brain activity. GMF
in time t is defined as:

GMFt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm
i¼1

ðui;t � utÞ2
s

where ui;t is the ERF activity for channel i at time t, ut is the mean activity
over all channels at time t, and m is the number of channels. In the
calculation of the topographic map of ERF, a planar gradient trans-
formation was applied (Bastiaansen and Kn€osche, 2000). In this way, the
interpretation of sensor-level data can be simplified since the planar
gradient places the maximal signal above the source which allows for
averaging across participants (H€am€al€ainen et al., 1993). To avoid dif-
ferences in the amount of noise due to different trial numbers, we
matched the number of the trials for the expected and unexpected con-
ditions by randomly selecting a subsample of trials (with the same
amount of tone C and tone D trials) from the condition that contained
more trials.

2.6. Decoding analysis

To investigate the fidelity of the neural representation of tone identity
in different conditions, we created forward models from the MEG signal,
which aimed to invert the encoding process in transforming the
perceived tones into brain activity. Similar to previous studies (Kok et al.,
2017; Mostert et al., 2015), we used a linear discriminant analysis
approach (Fisher, 1936). We assumed that there is a linear combination
of data from different MEG components that can best represent the
characteristics of the perceived tones. Such a representation profile R at
time t can be represented as:

Rt ¼ β1;t � u1;t þ β2;t � u2;t þ…þ βn;t � un;t

Where β1;t ; β2;t ;…; βn;t are the weights for the linear combination at time
t. For the sake of being representative, the representation profiles should
be similar from each other across different trials in one condition, but
they also should be dissimilar from each other across trials in different
conditions. Therefore, in order to best characterize tone C and tone D in
our experiment, a score function can be created:
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f ðBÞ ¼ dist RtoneC
t ;RtoneD

t

var
�
RtoneC

�þ var
�
RtoneD

�
� �
t t

where B ¼ ½β1;t ; β2;t ; …; βn;t �, distðx; yÞ ¼ ðx � yÞ2 is the function for
calculating the distance between the mean representation profiles of the
two tones and is the function to calculate the variance within one con-
dition. Mathematically, such score function will be maximal when:

B ¼ butoneC � butoneD

StoneC þ StoneD

where bu ¼ ½u1;t ; u2;t ; …un;t �, is the mean activity over trials in one con-
dition for all components; S is the within-condition covariance. When
such a score function is maximal, the combination weights B are the
optimized ones.

Before performing the forward modeling, in order to improve the
signal to noise ratio, the data were first averaged within a window of
20ms centered on the time point of interest. Furthermore, we applied
principal component analysis to further reduce the correlation within the
data so that the data are simpler for the classifier and the noise and ar-
tifacts inside of the data can be separated out and then be suppressed by
the classifier. (Edward Jackson, 2005; Grootswagers et al., 2017). To
avoid differences in decoding resulting from a different numbers of trials,
we matched the number of trials between tone C and D by randomly
selecting a subsample of trials from the condition with more trials. In the
comparison between the expected and unexpected conditions, we also
matched the numbers of trials between the expected and unexpected
conditions. We trained and tested the weights using a 10-fold
cross-validation method for testing the learned weights in an indepen-
dent dataset (Varoquaux et al., 2017) separately for the expected and
unexpected conditions. Trials were divided into 10 subsets where each
subset contained a balanced amount of trials from each tone. Weights
were obtained using all-but-one subsets and then applied to the
remaining subset. This process was repeated for all subsets for each time
point. Weights obtained from one time point were also applied to other
time points to generate the temporal generalization matrices (training
time� testing time).

2.7. Statistical analysis

In order to statistically compare the evoked auditory activity in
different conditions, we applied non-parametric cluster-based permuta-
tion tests (Maris and Oostenveld, 2007) across participants, which con-
trol the type I error rate in the context of multiple comparisons by
identifying significant clusters. For GMF analyses, we first obtained the
mean GMF in each condition for each participant. Random-effect statis-
tics were obtained by computing paired t-statistics for every time point
across all participants. Cluster-level statistics were then computed by
taking the sum of the t-values within a cluster and comparing that with a
null distribution generated by drawing 1000 random permutations of the
observed data by shuffling the condition labels for each participant. Here,
the clusters were defined as a group of contiguously above-threshold data
points (p< 0.05) on the basis of temporal adjacency. A cluster was
considered significant if the cluster-level statistics (sum of the t-statistics
values within the cluster) were larger or smaller than 97.5% of the sta-
tistics in the null distribution (two tailed α< 0.05). The cluster-based
correction was applied in the time window from 0 to 600ms relative
to the second tone onset.

A similar approach was used for the statistical tests on the general-
ization matrices of the decoding analysis for both the expected and un-
expected conditions. Here, since the data were two-dimensional, clusters
were defined as the neighboring elements which were cardinally or
diagonally adjacent. For the difference between the expected and unex-
pected condition, the t-statistics values were first calculated for each
subject and then compared across subjects by applying similar cluster-
level statistics. Additionally, the mean difference within the significant
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cluster was calculated separately for the expected and unexpected con-
ditions, and the neural representation difference was calculated by sub-
tracting the mean difference in the expected condition from the
difference in the unexpected condition.

Finally, to examine possible associations between (univariate) GMF
differences and (multivariate) neural representation differences, we
calculated the Pearson correlation coefficient between these measures
within the same time window across subjects.

3. Results

3.1. Behavioral results

The participants’ task was to press a button whenever the target tone
was presented. Participants correctly and quickly responded to almost all
target tones (hit rate: 95.6� 1.9%, mean� SD, reaction time:
375� 69ms, mean� SD) and correctly refrained from responding to
almost all other tones (false alarm rate: 0.01� 0.03%, mean� SD).
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3.2. Evoked activity is suppressed for expected tones

We compared the overall MEG evoked response between expected
and unexpected tone pairs. The first tone of the pair elicited a strong
global mean field (GMF) activity (Fig. 2A), which was maximal around
100ms after stimulus onset. There were no differences in GMF between
the expected and unexpected condition before the second tone onset
(p> 0.10 for all time points). The second tone of the tone pairs evoked
long-lasting GMFs with similar amplitude as the first tone, which was
also maximal around 100ms and sustained until ~600ms after stimulus
onset. The expectation of tone identity strongly modulated the evoked
neural activity: GMF amplitude in the expected condition was lower than
in the unexpected condition (Figs. 2A and 70–550ms after second tone
onset, cluster-based correction p¼ 0.02; post hoc paired t-test for mean
GMFs from 0 to 600ms: p¼ 1.29 х 10�7).

Furthermore, we obtained the topographic representation of the
neural activity in the time window from 0 to 100ms, 100–300ms and
300–500ms relative to the second tone onset using the planar-
transformed ERF signals in different conditions (Fig. 2B). Tones elicited
Fig. 2. (A) Comparison of the global mean field ac-
tivity between the expected and unexpected condi-
tions. Dashed lines indicate the onset time for the first
tone (�0.4 s) and second tone (0 s). The black line
indicates time points with a significant difference
(cluster correction p< 0.05) in GMF between the ex-
pected and unexpected conditions. Shaded areas
denote the standard errors of the mean (SEM) across
participants. (B) Topographical representation of
mean planar-transformed event-related field activity
for different time windows in the expected condition
(top), unexpected condition (middle) and the differ-
ence between the two conditions (bottom).
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strong neural activity over bilateral temporal sensors for both expected
and unexpected conditions in all three time windows and the difference
between the two conditions shared a similar topographical pattern as the
tone elicited activities.

Expected tones were repeated more frequently than unexpected tones
within a block. Therefore, we ran a control analysis to determine whether
repetition suppression was a relevant factor that could partly explain our
experimental findings. To this end, we compared the global mean field
activity between tone pairs that were preceded by the same tone pair
(repeated tone pairs) and tone pairs that were preceded by a different
tone pair (non-repeated tone pairs). There was no significant difference
between these conditions (all p> 0.10, see Supplementary Material),
suggesting that repetition suppression is an unlikely explanation for the
observed findings.

3.3. Valid expectation of tone identity reduces the fidelity of neural
representation

We adjudicated between the expectation sharpening model and
expectation dampening model by investigating the neural representation
fidelity in expected and unexpected conditions. Taking advantage of the
cross-validation technique, we trained linear forward models to maxi-
mize the distance between Tone C and Tone D in the feature space using a
large proportion of the data and obtained the representation profile
(decoder signal) for the rest in different experimental conditions (see
Materials and Methods). On this account, if the difference in decoder
signals between Tone C and Tone D is larger in the expected condition
than in the unexpected condition, the data favor the expectation sharp-
ening model, while the opposite pattern favors the expectation damp-
ening model (Fig. 1C).

We first investigated the decoder signals for expected and unexpected
conditions (trial numbers were matched between conditions, see Mate-
rials and Methods) when performing the training and testing procedure
in the same time bins. As a sanity check, for both the expected and un-
expected conditions, we found no difference between the trials con-
taining tone C and trials containing tone D before the second tone (tone C
or D) onset. After the second tone onset, decoder signals corresponding to
Fig. 3. (A) Decoder signals of tone C and tone D in the expected condition in diff
participants and the solid line is for tone D. Shaded areas around the lines denote the s
Temporal generalization matrix of the mean decoder signal difference between tone C
of the row corresponds to the time bin (20ms) that was used to train the linear forwar
obtain the decoder signal. The diagonal of the matrix corresponds to the difference
found after cluster-based correction. (D) Same as (C), but in the unexpected conditi
significant cluster (p< 0.05) after multiple comparison correction using a cluster-base
between the unexpected and expected conditions. Black outlines indicated the signi
number of trials was matched for tone C and D and also for the expected and unexp
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tone C and D were distinguishable in the unexpected condition (post hoc
paired t-test on the mean distance from boundary from 0 to 600ms for
tone C and D, p¼ 3.8 х 10�5), but not in the expected condition (p¼ 0.14
from 0 to 600ms on the mean distance from boundary, Fig. 3A and B).
Post hoc paired t-test between the distance from tone C to tone D in the
unexpected condition and the distance in the expected condition also
revealed a significant difference (from 0 to 600ms, p¼ 0.0048). We
further obtained the decoder signal difference between tone C and D in
the form of a generalization matrix by training and testing on the same
and different time bins. A paired t-test was performed on the difference
separately for expected and unexpected conditions and then the statis-
tical values were corrected for multiple comparison using a cluster-based
permutation test (see Materials and Methods). A significant cluster of
activity pattern difference between tone C and D was found from ~85 to
390ms in the unexpected condition (p¼ 0.023) while no significant
cluster was found in the expected condition (p¼ 0.409, Fig. 3C and D).
We further statistically compared the difference between the expected
and unexpected conditions and results showed that the difference in the
unexpected condition was significantly larger than the expected condi-
tion (Fig. 3 E, significant cluster from ~150 to 330ms; p¼ 0.021).

A possible explanation is that ineffective decoding in the expected
condition was caused by the linear forward modeling itself, i.e., this
method was specific for the unexpected condition and the decoder sig-
nals between tone C and D were not distinguishable in all scenarios in the
expected condition. In order to rule out this explanation, we performed
the same forward modeling analysis on all trials in the expected condi-
tion (matched trial number for tone C and D) which contained ~3.5 times
more trials than the previous analysis. By using this larger set of trials, we
could observe a significant difference in decoder signals between tone C
and D after the second tone onset (post hoc paired t-test from 0 to 600ms,
p¼ 2.97 х 10�4; significant cluster from ~100 to 450ms, p¼ 0.019;
Fig. 4A and B), indicating it is possible to distinguish different tone
identities in the expected condition. Therefore, the ineffective decoding
in the previous analysis should not be caused by the decoding technique
itself. Rather, the data suggest that the neural activity patterns are less
distinct during the expected condition, leading to a worse ability to
classify its identity compared to the unexpected condition.
erent time bins. The dashed line is the mean decoder signal for tone C across
tandard errors of the mean. (B) Same as (A), but in the unexpected condition. (C)
and D in the expected condition. For each element inside of the matrix, the time
d model and the time of the column corresponds to the time bin that was used to
of the decoder signal between tone D and C in (A). No significant clusters were
on. The diagonal of the matrix corresponds to (B). Black outlines indicated the
d permutation. (E) Group-level t-statistics of the neural representation difference
ficant cluster (cluster-based correction, p< 0.05). For all analyses in (A–E), the
ected conditions. Time 0 corresponds to the second tone onset.



Fig. 4. (A) Decoder signals of tone C and tone D in the expected condition for all trials (~3.5 times more trials than in Fig. 3 A and C, matched trial numbers for tone C
and D) in different time bins. (B) Temporal generalization matrix of the mean decoder signal difference between tone C and D in the expected condition for all trials.
Black outlines indicated the significant cluster (cluster-based correction, p< 0.05).
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In order to assess whether the difference in the neural representation
fidelity between the expected and unexpected conditions was the direct
result of the overall activity difference between the two conditions, we
examined whether these two phenomenawere correlated across subjects.
A correlation analysis showed no reliable link between the mean neural
representation difference within the significant cluster (Fig. 3 E) and the
mean GMF difference within the time window from 150 to 330ms
(Fig. 5, r¼ 0.037, p> 0.10). This suggests that the reduced neural rep-
resentation in the expected condition is potentially not simply the result
of the smaller overall evoked activity.

4. Discussion

We investigated the effects of expectation suppression on the
magnitude and fidelity of the neural representation in the auditory
domain. We observed strong expectation suppression for expected,
compared to unexpected, auditory events (Fig. 2). Linear forward
modeling analysis showed that the difference between the decoder sig-
nals of the two different tones (tone C and D) was smaller in the expected
condition than in the unexpected condition (Fig. 3), in line with an
expectation dampening model.

Our data provide strong evidence for expectation suppression of
auditory evoked activity, in line with several earlier studies showing
suppression of expected stimuli in the auditory domain (Todorovic et al.,
2011; Todorovic and de Lange, 2012; Wacongne et al., 2011; N€a€at€anen
et al., 1978; Bendixen et al., 2012). Our study extends these studies by
Fig. 5. Pearson correlation between the global mean field difference and neural
representation difference across participants. The neural representation differ-
ence was calculated by subtracting the mean decoder signal difference between
tone C and D within the significant cluster in Fig. 3E in the expected condition
from the difference in the unexpected condition for each participant. The global
mean field difference between the two conditions was averaged across the same
time window (150–330ms). Each red circle represents data from one participant
and the line is the best linear fit of the data. No significant correlation was
observed between the two measures (r¼ 0.037, p¼ 0.86).

247
also investigating the fidelity of the neural representation, following up
on previous research in the visual domain (St John-Saaltink et al., 2015;
Meyer and Olson, 2011; Kumar et al., 2017; Kaposvari et al., 2018;
Ramachandran et al., 2016; Richter et al., 2018; Kok et al., 2012). In our
experiment, we manipulated expectation in a block-wise fashion, i.e.
participants expected a particular tone pair during small blocks of trials.
While this is different from studies using manipulations of conditional
probability (Todorovic and de Lange, 2012), our experimental manipu-
lation yielded highly similar activity differences between expected and
unexpected tone pairs, suggestive of similar mechanisms. Furthermore,
the expected and unexpected tones for which we observed expectation
suppression were all task irrelevant and uninformative about the target
tone. Therefore, it is unlikely that top-down attentional differences be-
tween the conditions are at play. On the other hand, one could argue that
there is a difference in bottom-up attention caused by the violation of a
statistical regularity. However, similar to earlier electrophysiological
findings (Meyer and Olson, 2011), the latency of the expectation mod-
ulation is highly similar to the latency of the evoked activity, i.e. the
suppression is visible from the onset of the auditory response. An
attentional modulation that is generated down-stream from the sensory
cortex would be expected to manifest itself only later in time. The
observed expectation suppression may provide evidence for a specific
neural coding strategy in the brain: since there is more overall redundant
information in the expected condition than in the unexpected condition,
the reduced neural activity in the expected condition is in line with the
efficient coding principle (Barlow, 1961), which states that sensory sys-
tems should minimize the number of spikes to transmit a given signal.

Accompanied by expectation suppression, our data favored the
expectation dampening model rather than the expectation sharpening
model. When comparing the decoder signals in the expected and unex-
pected conditions, we matched trial number not only between the two
tone identities but also between the two conditions in order to further
remove any potential difference of history and noise (Friedman et al.,
2001). Since expected and unexpected trials were randomly intermixed
during the experiment, the amount of noise caused by the MEG acqui-
sition should also be similar. Furthermore, since the tone identities could
be successfully decoded in the unexpected condition or when we
enhanced the signal-to-noise ratio by introducing more trials in the ex-
pected condition, we could indeed also distinguish neural representa-
tions for expected tone pairs. Therefore, the observed difference between
the fidelity of the decoder signals in the expected and unexpected con-
dition is likely resulting from a stimulus-specific attenuation of auditory
activity. Moreover, since the neural activity difference and neural rep-
resentation difference were not correlated with each other and were
maximal in different time windows, the observed neural representation
difference could not be simply explained by a boost in neural activation.
Rather, the overall GMF amplitude difference, which was maximal
around 300–500ms, may reflect a more general surprise mechanism
(Donchin, 1981; Sutton et al., 1965; Nieuwenhuis et al., 2005), whereas
the decoding differences are related to an earlier sensory and
stimulus-specific signal difference.
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In the current study, we did not observe a sharpened neural repre-
sentation in the expected condition, in contrast to a previous study in the
visual domain (Kok et al., 2012). There are obviously many differences
between the current study and the previous one (e.g. MEG vs. fMRI), but
we highlight some of the potentially most relevant differences below.
Firstly, sharpening was found selectively in the primary visual cortex
(Kok et al., 2012). However, electrophysiological (Meyer and Olson,
2011; Kumar et al., 2017) and fMRI (Blank and Davis, 2016; Richter
et al., 2018) studies showed that in higher-order visual areas such as
inferior temporal cortex in monkey and lateral occipital complex in
humans, neural representations are dampened for expected visual object
stimuli. Since our results are based on all MEG channels over the brain, it
is impossible to know at which stage of the cortical hierarchy the
observed dampening process has taken place in our study. Secondly,
similar to many previous studies that observed dampening (Meyer and
Olson, 2011; Kumar et al., 2017; Richter et al., 2018), the expected and
unexpected tones were not the target stimuli in the current study. In
comparison, discrimination judgments were required for all expected or
unexpected stimuli in the study by Kok et al. (2012). Targets may be
processed differently from distractors, possibly engaging different
attentional selection processes that may sharpen stimulus representa-
tions (Serences et al., 2009).

In the framework of predictive coding, prior expectation generates a
prediction feedback signal which is sent to the lower hierarchical area,
where it interacts with the bottom-up input (Rao and Ballard, 1999).
Current implementations of predictive coding as a model for cortical
processing suggest the existence of two subpopulations of neurons: pre-
diction units which represent the sensory input (which can be sharpened
by matching prior expectation) and prediction error units which repre-
sent the difference between the sensory input and prediction (which can
be dampened by matching expectation) (Friston, 2005; Spratling, 2008;
Blank and Davis, 2016; Kok et al., 2012). One explanation for the
different observations with respect to expectation sharpening and
dampening is the notion that the observed neural signals may be from
different subpopulation: sharpening effects occur in the prediction units
and dampening effects occur in the prediction error units. At present, this
is, however, pure speculation, and it will need to be specified under
which circumstances, when and where activity modulations in these two
hypothesized types of units are expected. Alternatively, the different
observations may be caused by neural signals from different time win-
dows. Prior expectation can preactivate the corresponding neurons and
bias the neural representation toward the expected stimulus (Kok et al.,
2017; A. H. Bell et al., 2016; Reddy et al., 2015). Therefore, sharpening
and dampening operations may happen at different time windows. The
resultant sharpening (Kok et al., 2012) or dampening (Richter et al.,
2018) observed using fMRI is the integral of potentially different pro-
cesses that happen at different stages of cortical processing.

In summary, our results showed that prior expectation of tone identity
leads to suppressed overall neural activity over the auditory cortex. This
suppression is accompanied by, but not correlated with a reduction of the
neural representation fidelity of the tone identity, suggesting a damp-
ening of the neural representation by expectation in the auditory domain.
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